1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
//! # Input File Ranges //! //! A `Span` is equivalent to a slice of the input file annotated with //! line and column of start and end indices. //! //! A `Span` is immutable by design. Mutations will always return a new //! instance of a Span. //! //! A `Span` is a guranteed valid text range of the input file. This means //! actions like `as_str()` cannot fail with out of bounds indices on run-time. //! //! The range defined by the start and end position of a `Span` is inclusive on //! the both sides (lower and upper bound). As a result, `as_str()` will contain //! the character pointed at by the start position and the character pointed to //! by the end position. Beware that this is not equivalent to rust's behaviour //! on slices, which will not contain the upper bound if `low..high` is used. //! By including the upper bound in the `Span`, we do not have to generate a //! fake `EOF`-Position/character beyond the real end of input to create a //! `Span` that contains the last character of the input file. //! This also means that you cannot create an empty `Span`. //! //! Analog to [`Position`](struct.Position.html), rows and columns are zero //! indexed. This means that the first character of a file is positioned at //! column 0 in row 0. use super::Position; use std::{ cmp::{max, min}, fmt, }; #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct Span<'f> { /// position of the first char in the span. start: Position<'f>, /// position of the last char in the span. end: Position<'f>, } impl<'f> Span<'f> { /// Create a new span from two positions. /// /// This is guranteed to return a valid range. If the order of the /// arguments is incorrect, they will be swapped. If the same position /// is given twice, the span will cover a single character, the character /// given by the position, pub fn new(a: Position<'f>, b: Position<'f>) -> Self { Self { start: min(a, b), end: max(a, b), } } /// Creates a span containing only the given position /// /// ``` /// use asciifile::{AsciiFile, Position, Span}; /// /// let file = AsciiFile::new(b"ABCD").unwrap(); /// let position = file.iter().nth(2).unwrap(); /// let span = Span::from_single_position(position); /// assert_eq!("C", span.as_str()); /// ``` pub fn from_single_position(position: Position<'f>) -> Self { Span { start: position, end: position, } } /// Creates a span containing only the given position /// /// ``` /// use asciifile::{AsciiFile, Position, Span}; /// /// let file = AsciiFile::new(b"abcdfeghAAA").unwrap(); /// /// let positions = file /// .iter() /// .take_while(|position| position.chr().is_lowercase()) /// .collect::<Vec<_>>(); /// /// let span = Span::from_positions(&positions).unwrap(); /// assert_eq!("abcdfegh", span.as_str()); /// ``` pub fn as_str(&self) -> &'f str { // the range is inclusive on both sides! unsafe { std::str::from_utf8_unchecked(self.as_bytes()) } } pub fn as_bytes(&self) -> &'f [u8] { // the range is inclusive on both sides! &self.start.file().mapping[self.start.byte_offset()..=self.end.byte_offset()] } pub fn is_empty(&self) -> bool { self.end.byte_offset() == self.start.byte_offset() } pub fn is_single_char(&self) -> bool { self.end.byte_offset() - self.start.byte_offset() == 1 } pub fn start_position(&self) -> Position<'f> { self.start } pub fn end_position(&self) -> Position<'f> { self.end } /// Check if a span extends over multiple lines /// /// This will not consider spans that contain a single trailing /// whitespace as multiline. /// /// ``` /// use asciifile::{AsciiFile, Span}; /// /// let file = AsciiFile::new("a\n".as_bytes()).unwrap(); /// let first = file.iter().next().unwrap(); /// let last = file.iter().last().unwrap(); /// let span = Span::new(first, last); /// assert!(!span.is_multiline()); /// ``` /// /// Also, A span only containing a newline will not be considered /// multiline. /// /// ``` /// use asciifile::{AsciiFile, Span}; /// /// let file = AsciiFile::new("\n".as_bytes()).unwrap(); /// let newline = file.iter().next().unwrap(); /// let span = Span::new(newline, newline); /// assert!(!span.is_multiline()); /// ``` /// /// A span with one or more newlines as a prefix will be considered /// multiline. /// /// ``` /// use asciifile::{AsciiFile, Span}; /// /// let file = AsciiFile::new("\na".as_bytes()).unwrap(); /// let first = file.iter().next().unwrap(); /// let last = file.iter().last().unwrap(); /// let span = Span::new(first, last); /// assert!(span.is_multiline()); /// ``` pub fn is_multiline(&self) -> bool { self.start.row() != self.end.row() } /// An iterator over the lines of a span. pub fn lines<'span>(&'span self) -> LineIterator<'span, 'f> { LineIterator::new(self) } /// extends the span to include the given position pub fn extend_to_position(self, position: &Position<'f>) -> Span<'f> { Span::combine(&position.to_single_char_span(), &self) } /// test if a span contains another span pub fn has_subset(self, span: &Span<'f>) -> bool { Span::combine(span, &self) == self } pub fn combine(a: &Span<'f>, b: &Span<'f>) -> Span<'f> { Span { start: min(a.start, b.start), end: max(a.end, b.end), } } /// Get the overlapping part of two spans. /// Returns `None` if the spans are disjunct (do not overlap). pub fn intersect(a: &Span<'f>, b: &Span<'f>) -> Option<Span<'f>> { if b.start > a.end || a.start > b.end { None } else { Some(Span { start: max(a.start, b.start), end: min(a.end, b.end), }) } } /// Get the number of characters in a span pub fn len(&self) -> usize { self.as_str().len() } pub fn from_positions(positions: &[Position<'f>]) -> Option<Self> { match positions { [] => None, [single] => Some(Span::from_single_position(*single)), [head, tail..] => { let mut span = Span::from_single_position(*head); for position in tail { span = span.extend_to_position(position) } Some(span) } } } } impl fmt::Display for Span<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.is_single_char() { write!(f, "{}", self.start) } else if !self.is_multiline() { write!(f, "{}-{}", self.start, self.end.column()) } else { write!(f, "{}-{}", self.start, self.end) } } } /// An Iterator over the lines of a `Span`. /// /// This will always emit the whole lines. So for example, /// if your span contains the sequence "d\ne" in the file /// "abcd\nefgh\nijkl" the iterator will return the following /// two lines: ["abcd\n", "efgh\n"] /// /// Analog to `Position::line` this function will append /// newlines to the end of each line. This means that `is_mutiline(.)` /// will be true, since "\n" is positioned at the next line. /// /// ``` /// use asciifile::{AsciiFile, Position, Span}; /// /// let file = AsciiFile::new(b"abcd\nefgh\nijkl").unwrap(); /// let start = file.iter().nth(2).unwrap(); /// assert_eq!(start.chr(), 'c'); /// let end = file.iter().nth(9).unwrap(); /// assert_eq!(end.chr(), '\n'); /// let span = Span::new(start, end); /// assert_eq!(span.as_str(), "cd\nefgh\n"); /// /// let lines = span /// .lines() /// .map(|span| span.as_str().to_string()) /// .collect::<Vec<_>>(); /// /// assert_eq!(lines, vec!["abcd\n".to_string(), "efgh\n".to_string(),]); /// ``` pub struct LineIterator<'span, 'file> { span: &'span Span<'file>, line_to_emit: Option<Span<'file>>, } impl<'span, 'file> LineIterator<'span, 'file> { pub fn new(span: &'span Span<'file>) -> Self { Self { span, line_to_emit: Some(span.start_position().line()), } } pub fn numbered(self) -> LineNumberIterator<'span, 'file> { LineNumberIterator::new(self) } } impl<'span, 'file> Iterator for LineIterator<'span, 'file> { type Item = Span<'file>; fn next(&mut self) -> Option<Self::Item> { match self.line_to_emit { None => None, Some(ref line) => { let line_to_emit = *line; self.line_to_emit = if self.span.end_position() > line.end_position() { line.end_position() .next() .map(|first_char| first_char.line()) } else { None }; Some(line_to_emit) } } } } /// Iterator adapter that adds line numbers to a `LineIterator` /// /// ``` /// use asciifile::{AsciiFile, Position, Span}; /// /// let file = AsciiFile::new(b"abcd\n\n\nefgh\nijkl").unwrap(); /// let start = file.iter().nth(2).unwrap(); /// assert_eq!(start.chr(), 'c'); /// let end = file.iter().nth(12).unwrap(); /// assert_eq!(end.chr(), 'i'); /// let span = Span::new(start, end); /// assert_eq!(span.as_str(), "cd\n\n\nefgh\ni"); /// /// let lines = span /// .lines() /// .numbered() /// .map(|(num, span)| (num, span.as_str().to_string())) /// .collect::<Vec<_>>(); /// /// assert_eq!( /// lines, /// vec![ /// (1, "abcd\n".to_string()), /// (2, "\n".to_string()), /// (3, "\n".to_string()), /// (4, "efgh\n".to_string()), /// (5, "ijkl".to_string()), /// ] /// ); /// ``` pub struct LineNumberIterator<'span, 'file> { lines: LineIterator<'span, 'file>, } impl<'span, 'file> LineNumberIterator<'span, 'file> { pub fn new(lines: LineIterator<'span, 'file>) -> Self { Self { lines } } } impl<'span, 'file> Iterator for LineNumberIterator<'span, 'file> { type Item = (usize, Span<'file>); fn next(&mut self) -> Option<Self::Item> { self.lines.next().map(|span| { // TODO: this can be implemented more efficiently // in O(1) by traversing the sorted set of newlines directly // instead of using line_number(.) which needs O(log N) (span.start_position().line_number(), span) }) } }